Dental Implants

Silicon nitride material has been demonstrated in invitro experiments and animal studies to be effective against a wide variety of bacteria4, 5 including P. Gingivalis6, the bacteria implicated in gingivitis.

Silicon nitride material has the ability to turn on bone-forming cells (osteoblasts) and suppress bone resorbing cells. A change to manufacturing of the material resulted in a near-200% increase in bone formation by cells exposed to silicon nitride8. This finding could have implications and may speed up bone healing, bone fusion, and implant integration into the skeleton9. Several other studies have demonstrated enhanced bone formation in invitro and in animal models10-15.

In addition, SINTX has published extensive research regarding osseointegration of silicon nitride5, and superior bone healing17. Taken together, favorable results support the application and use of Si3N4 as a dental implant material.

References

4 T.J. Webster, A.A. Patel, M.N. Rahaman, and B.S. Bal, “Anti-Infective and Osteointegration Properties of Silicon Nitride, Poly (Ether Ether Ketone), and Titanium Implants,” Acta Biomater., 8 [12] 4447–4454 (2012).

5 Sethi, et al. “Reduced Bacteria Colonization and Increased Bone Formation on Si3N4 Spinal Implants: An Evaluation of Bacterial Colonization on Existing Implant Materials” Presented in part as a poster at the Congress of Neurological Surgeons Annual Meeting, October 1-6, 2011, Washington, D.C.

6 G. Pezzotti, R.M. Bock, B.J. McEntire, E. Jones, M. Boffelli, W. Zhu, G. Baggio, F. Boschetto, et al., “Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas Gingivalis,” Langmuir, 32 [12] 3024–3035 (2016).

8 G. Pezzotti, B.J. McEntire, R. Bock, M. Boffelli, W. Zhu, E. Vitale, L. Puppulin, T. Adachi, et al., “Silicon Nitride: A Synthetic Mineral for Vertebrate Biology,” Sci. Rep., 6 31717 (2016).

9 T.J. Webster, G.A. Skidmore, and R. Lakshminarayanan, “Increased Bone Attachment to Silicon Nitride (Si3N4) Materials Used in Interbody Fusion Cages (IBF) Compared to Polyetheretherketone (PEEK) and Titanium (Ti) Materials – An In vivo Study;” pp. 1–5 in Proc. 2012 Annu. Meet. Orthopeaedic Soc. 2012.

10 G. Pezzotti, B.J. McEntire, R.M. Bock, W. Zhu, F. Boschetto, A. Rondinella, E. Marin, Y. Marunaka, et al., “In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces,” ACS Biomater. Sci. Eng., 2 [7] 1121–1134 (2016).

11 G. Pezzotti, E. Marin, T. Adachi, A. Rondinella, F. Boschetto, W.-L. Zhu, N. Sugano, R.M. Bock, et al., “Bioactive Silicon Nitride: A New Therapeutic Material for Osteoarthropathy,” Sci. Rep., 7 44848 (2017).9. G. Pezzotti, N. Oba, W. Zhu, E. Marin, A. Rondinella, F. Boschetto, B.J. McEntire, K. Yamamoto, et al., “Human Osteoblasts Grow Transitional Si/N Apatite in Quickly Osteointegrated Si3N4 Cervical Insert,” Acta Biomater., 64 411–420 (2017).

12 G. Pezzotti, R.M. Bock, T. Adachi, A. Rondinella, F. Boschetto, W. Zhu, E. Marin, B. McEntire, et al., “Silicon Nitride Surface Chemistry: A Potent Regulator of Mesenchymal Progenitor Cell Activity in Bone Formation,” Appl. Mater. Today, 9 82–95 (2017).

13 C.C. Guedes e Silva, B. Konig, M.J. Carbonari, M. Yoshimoto, S. Allegrini, and J.C. Bressiani, “Tissue Response Around Silicon Nitride Implants in Rabbits,” J. Biomed. Mater. Res., 84A 337–343 (2008).

14 C.C. Guedes e Silva, B. König, M.J. Carbonari, M. Yoshimoto, S. Allegrini, and J.C. Bressiani, “Bone Growth Around Silicon Nitride Implants—An Evaluation by Scanning Electron Microscopy,” Mater. Charact., 59 1339–1341 (2008).

15 M. Ishikawa, K.L.D.M. Bentley, B.J. McEntire, B.S. Bal, E.M. Schwarz, C. Xie, and E. Avenue, “Surface Topography of Silicon Nitride Affects Antimicrobial and Osseointegrative Properties of Tibial Implants in a Murine Model,” J. Biomed. Mater. Res. A, 105 [12] 3413–3421 (2017).

17 G. Pezzotti et al. “Bioactive Silicon Nitride: A New Therapeutic Material for Osteoarthropathy”, Sci. Rep., 7 44848

Back To Top